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Abstract. Friction is studied in a model consisting of a relatively short chain of particles
(each one of which may be taken to represent a layer of atoms which is treated as rigid for
simplicity) with anharmonic interparticle interactions, dragged at slow speeds over a potential
which interacts with the particle on the end of the chain, with parameters chosen so that stick–
slip motion takes place. A transition from dissipative to dissipationless sliding is found as a
function of decreasing chain length, similar to that found for non-stick–slip motion. This could
be a simplified model for a small lubricant particle anchored to a surface at one end, being
dragged over a second surface at very slow speeds (about 1 cm s−1).

1. Introduction

Recently, there has been a good deal of effort directed towards trying to understand the
fundamental mechanisms responsible for kinetic friction. This is necessary in order to find
ways to lubricate micron size mechanical devices [1] and disk drive heads which operate
in extremely close proximity to the disk in order to store larger amounts of information in
smaller spaces.

It was recently proposed by the present author that when two solids of sufficiently small
(possibly molecular) size slide with respect to each other, they might be able to do so
with almost no friction at sufficiently low temperatures [2], in the situation in which the
bodies were only weakly coupled to the outside world. If we consider an insulator, for
example, for which there are only vibrational excitations, each vibrational mode would act
as an independent oscillator, and hence in the harmonic approximation the solids would not
heat up (i.e. there would be no friction) because a driven undamped harmonic oscillator
(more correctly, a weakly anharmonic oscillator) will not absorb energy from the driving
field unless it is driven exactly at its resonant frequency, which does not usually occur.
As either the temperature is raised or the solid is made larger (which results in the modes
being closer together compared to their width), the anharmonicity of the oscillators becomes
more important, eventually resulting in exchange of energy among the various vibrational
modes, allowing the solids to heat up [3]. This contribution to the phonon mode width
for an infinite solid, due to anharmonicity, is traditionally calculated by Fermi golden rule
perturbation theory [4], which depends on the existence of a continuum of modes. Clearly,
it does not apply to small solids, for which the modes are discrete.

A related phenomenon for which dissipationless behaviour might be possible is the
dissipation that occurs in magnetic small particles in ferro- or ferrimagnetic resonance.
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It might be easier to study this phenomenon on nanometer size particles than to observe
nanometer size particles sliding with respect to each other [5].

In slow speed sliding, there can be stick–slip motion, in which the system alternately
becomes stuck and then slides forward suddenly. Stick–slip motion occurring at the points
of contact of the two surfaces is likely to be responsible for ‘dry friction’ (i.e. a nonzero
force of friction for slow speed sliding velocity) because it allows the rate of dissipation
of energy to be nonzero even in the limit as the mean centre of mass velocity of a sliding
solid approaches zero, due to the rapid motion that takes place [6, 7]. It is this motion at the
points of contact which is believed to produce the energy dissipation due to kinetic friction
in the very slow speed limit [6, 7]. (It should not to be confused with stick–slip motion of
the sliding body as a whole, which is well known to result from an instability resulting from
the fact that the kinetic friction is a decreasing function of velocity, if the sliding body is not
too stiff [8].) In fact, in (6) and other work on friction in the slow speed limit, it is taken as
an established fact that the kinetic energy generated in the slip part of the stick–slip motion
occurring at very slow speeds is dissipated before the next slip takes place. A question that
arises is whether this assumption is in fact always true. Specifically, the question considered
here is whether frictionless behaviour in atomic level small (i.e. nanometre scale) solids will
still occur for slow speed sliding when there is stick–slip motion because, in this case, we
no longer have a situation in which each solid feels a steady time dependent force due to the
second solid, but rather, there is abrupt motion which could excite many vibrational modes.

The connection of the present model to the usual picture of sliding friction between
two bodies which are pressed together by a normal force is as follows: It is pretty well
accepted that Amonton’s law comes about because as the force pushing the surfaces together
increases, the actual area of contact increases, either because the number of asperities in
contact increases or because the area of contact at each pair of asperities that are in contact
increases. The actual shear stress at any contact due to friction does not increase with
increasing normal force. Since in the present study we will consider a model for what occurs
at a single point of contact, we need not worry about the value of the normal force pushing
the two surfaces in contact for the above reasons. The present study focuses on a single
lubricant particle which undergoes stick–slip motion at slow speeds. It is found that if the
particle has sufficiently few degrees of freedom, it can execute this motion with practically
no energy dissipation. If this occurs at each contacting lubricant particle, the sliding of the
solids can take place with practically no energy dissipation. In order for stick–slip motion of
small lubricating particles to occur with practically no energy dissipation, as discussed here,
these particles must be quite small (of the order of molecular dimensions). As we shall see,
their coupling to the surface being lubricated must be sufficiently weak so that this coupling
does not give the particle’s phonon modes a width which is larger than their spacing.

2. Discussion of the model

In order to study the question of whether nearly frictionless behaviour is possible in small
solids when stick–slip motion takes place, let us consider as a model a linear chain of
interacting particles, one end of which is held fixed and the other end of which moves
in a sinusoidal potential. (While the actual potential at the interface is not expected to
be periodic, if the sliding velocity is sufficiently slow that the time between slips is long
compared to the length of a slip, so that each slip is effectively independent, the use of a
periodic potential should not affect the results in a qualitatively significant way.) The chain
is not to be thought of literally as a chain, but rather each particle in the chain is taken
to represent a layer of atoms, treated as rigid for simplicity, as illustrated in figure 1. For
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example, this could be a model for a layered solid lubricant, such as MoS2, whose layers
are quite rigid in contrast to the interlayer coupling. Damping of the vibrational modes of
the chain resulting from the energy flow that must take place from the chain to the surface
to which it is attached could prevent nearly frictionless sliding from occurring. This can
be minimized, however, if the coupling between the chain and the surface (i.e. the force
constant connecting the chain to surface atoms to which it is attached) is sufficiently weak
compared to the force constant between the units making up the chain [2]. This is discussed
in appendix A. The equation of motion for the chain studied is

mẍj = f (xj+1− xj )− f (xj − xj−1)+ δj,Nf0 sin[Q(xj − vt)] (1)

wherem is the mass of a single unit of the chain,xj is the displacement of thej th unit (in
units of the interparticle spacing in the chain),Q is the wavevector of the periodic potential
which acts on theN th unit in the chain,v is the velocity at which this potential is moving
andf0 is the amplitude of the force produced by this potential. We takex0 to be constrained
to be equal to zero at all times. The force between two neighbouring units was taken to be

f (x) = −α[x − β(Ax2− Bx3)] (2)

whereα is the force constant,a is the lattice constant,x is the displacement of a particle
with respect to one of its neighbours in the chain,β is a parameter between zero and one
which allows us to vary the strength of the anharmonic terms andA is taken to be equal
to 9.354 4347 andB is taken to be equal to 49.077 139. The numerical values arbitrarily
chosen for the coefficients of thex2 andx3 terms are the values obtained in the Taylor series
expansion of the Lennard-Jones force up to this order. Not too much significance should
be attached to this choice of coefficients, however, as our purpose here is only to illustrate
qualitative effects of nonlinear interactions, rather than to model a particular experimental
system. (It is necessary to include anx3 in addition to anx2 term because anx2 term in the
force results from anx3 term in the expansion of the potential inx. A potential containing
only x3 anharmonic terms can lead to instabilities because its absolute minimum value is
−∞.) In most of the calculations reported here, the energy of the chain, defined as

E =
∑
j

0.5mẋ2
j + α{0.5x2

j,j−1+ β[−(A/3)x3
j,j−1+ (B/4)x4

j,j−1]} (3)

wherexj,j−1 = xj − xj−1, is plotted as a function of the time.
(The model described by equations (1) and (2) reduces to the Tomlinson model [7],

if a damping term−mγ ẋj is included on the right hand side of equation (1) andβ in
equation (2) is set equal to zero. This is true because whenxj is expressed in terms of its
normal modes, the resulting equations for these modes reduce to equations of motion for a
collection of noninteracting driven harmonic oscillators [2, 9]. In order to study stick–slip
motion in the Tomlinson model,α must be chosen to be sufficiently weak for stick–slip
motion to occur and the damping term included in the equations of motion must be chosen
to be sufficiently strong so that all of the kinetic energy produced in the slip part of the
stick–slip motion is dissipated.)

The classical mechanical equations of motion for this model were solved using the
Runge–Kutta method for various size systems and sinusoidal potential strengths. Unless
a damping term proportional to the velocity of each unit is included in the problem, no
energy is dissipated when we use the harmonic approximation (i.e. forβ equal to zero),
which is expected because in this case the model reduces to a collection of driven harmonic
oscillators, the phonons, and it is well known that a driven harmonic oscillator does not
absorb energy unless it is damped. (In contrast, an infinite system, which consists of a
continuum of harmonic oscillators, will exhibit friction and dissipation [10].) Even without
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Figure 1. This figure illustrates the model studied in this article, which consists of a small
solid interacting with a sinusoidal potential. For simplicity, the atoms in a single atomic layer
are bound together rigidly (as denoted in this figure by the solid horizontal lines connecting the
atoms), but shearing of the layers is allowed (as indicated by the dotted vertical lines connecting
the atoms.) In the calculations performed in this article, the top layer is held in place while
the sinusoidal potential is moved at speeds which are slow compared to the speeds that occur
during the slip part of the stick–slip motion.

including a damping term in the model, the anharmonicity in the problem will in general
produce friction [2].

Our goal here is to illustrate that it is possible to have a transition from dissipational to
dissipationless stick–slip motion as a function of decreasing chain length. Therefore, in the
calculations, whose results are reported in the next section, we chose the parameterαa/N

sufficiently small compared tof0 so that stick–slip motion occurs [7]. The parameterβ was
chosen to be sufficiently small so that dissipationless sliding would occur for a chain which
is still long enough to exhibit stick–slip motion. For largerβ but smallerN we would still
be able to observe dissipationless behaviour [2], but not stick–slip motion. This is because
for very smallN , stick–slip motion will not occur unless the interparticle coupling is very
weak. It is of course possible that small lubricant particles attached to a sliding surface
might not be flexible enough to exhibit stick–slip motion at all. (There could still, however,
be stick–slip motion due to flexibility of the larger body to which the lubricant particles are
attached if this body is sufficiently thick.) Our choice of parameters is motivated by the
fact that our purpose here is only to show that it is possible to have dissipationless sliding
for very small solids in a situation in which stick–slip motion does occur.

3. Results of the calculations

Figures 2 and 3 show the results of calculations on anharmonic versions (i.e.β 6= 0 in
equation (2)) of the model illustrated in figure 1. Figure 2 shows the displacement of
the particle in contact with the sinusoidal potential for both a 30 and a 60 atom chain with
β = 0.2 in order to show that the motion is indeed stick–slip in nature. In these calculations
the sinusoidal potential moves at a speed ofv = 10−5a/t0, wherea is the interparticle
spacing in the chain andt0 = 2π(m/α)1/2 is the time scale in these calculations (orv is
about 1 cm s−1). In comparison, theN th particle in the chain moves a distance of about
2a in a time of 3× 103t0, implying a slip velocity which is a factor of about 102 faster
than the velocity of the potential. Thus, we are justified in assuming that this calculation
is being done in the limit of small average sliding velocityv. Figure 3 shows plots of
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Figure 2. Results are presented of calculations of thexN for a chain with an anharmonic
interaction withβ = 0.2 for f0 = 0.04αa for a 30 (the circles) and a 60 atom chain (the
asterisks), whereα is the force constant for the harmonic part of the interparticle force, and the
velocity of the sinusoidal potential is 10−5a/t0, wheret0 = (2π(m/α)0.5).

Figure 3. This figure shows the results of a calculation of the energy versus time for an
anharmonic chain with the same parameters as in figure 2 for a 30 (the circles) and a 60 atom
(the asterisks) chain.

the energy versus time for the same 30 and 60 atom anharmonic chains. The 60 atom
chain shows behaviour reminiscent of the plot of the work done on the chain versus the
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time for the usual Tomlinson model [7] (i.e. a highly damped harmonic oscillator), which
increases with increasing time, consistent with dissipative behaviour. While there exists no
rigorous proof that the energy of the 60 atom chain will continue to increase forever as a
function of time, it is quite clear that the behaviour of the energy of this chain is distinctly
different from that of the 30 atom chain. This behaviour is consistent with a transition from
nondissipative to dissipative behaviour as a function of increasing chain length for a chain
exhibiting stick–slip motion, reminiscent of such a transition found in [2] for non-stick–slip
motion.

In order to look experimentally for the phenomenon of nearly dissipationless sliding,
one must construct a film of these small lubricant particles such that the phonon mode
spacing is large compared to the damping constantγ , due to coupling of the chain to the
outside world [9]. This quantity is likely to be dominated by the contribution from the flow
of energy from the lubricant particles to the macroscopic surfaces that hold them. Estimates
of the parameters in the problem for which the phonon mode spacing of the small lubricant
particle is much larger thanγ , and thus, nearly frictionless stick–slip motion is possible,
are given in the appendix. Furthermore, for more concentrated films, coupling between the
particles can make the film act like a macroscopic film to which the arguments presented
in this paper do not apply, rather than a collection of individual particles. Calculations
will be presented in a future publication, however, which support the possibility that this
contribution to the friction can be minimized if the film is disordered so as to make the
modes localized.
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Appendix A. Damping of the vibrational modes of a small solid due to coupling to a
larger solid

While the vibrational modes of a small sample are discrete, when it is attached to a larger
solid, it must be thought of as being part of the larger solid, whose modes are continuous.
Nevertheless, if the coupling to the larger solid is weak, the discrete mode structure that the
smaller solid would have if it were isolated must survive, but we would expect these modes
to be broadened by their interaction with the modes of the larger solid. In order to study
this damping more quantitatively, consider the model described by the following equations:

mü` = −
∑
`′

D(R` −R`′) · u`′ −
∑
j ′

Γ(R` −Rj ′) ·Uj ′ (A1a)

MÜj = −
∑
j ′

D′(Rj −Rj ′) ·Uj ′ −
∑
`′

Γ(Rj −R`′) · u`′ (A1b)

where m,u` andD(R` −R`′) are the mass, displacement and dynamical matrix (denoted
by a tensor) for an atom in the small solid andR` is the location of thè th atom. Similarly,
M, Uj andD′(Rj −Rj ′) are the mass, displacement and the dynamical matrix for an atom
in the larger solid, andRj is the location of thej th atom. The index̀ runs only over
atoms in the small solid and the indexj runs only over atoms in the large solid. The tensor
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Γ(R` −Rj ) gives the force constants acting between an atom in the small and an atom in
the large solid. Equation (A1b) can be solved to yield

Uj = −
∑
j ′,`′

G(Rj −Rj ′) · Γ(Rj ′ −R`′) · u`′ (A2)

whereG(Rj −Rj ′) is the Green function for equation (A1b). When this equation is used
to substitute forUj ′ in equation (A1a), we obtain

mü` = −
∑
`′

D(R` −R`′) · u`′ −
∑
j ′,j ′′,`′

Γ(R` −Rj ′) ·G(Rj ′ −Rj ′′) · Γ(Rj ′′ −R`′) · u`′ .

(A3)

This equation will be used to estimate the damping of the discrete modes of the small solid
due to its interaction with the large solid. Let us assume thatR`, which gives the positions
of the atoms in the small solid, only runs over a small distance in the direction transverse
to the small particle and thatΓ(Rj −R`) is only nonzero when the atoms at positionsRj
andR` are on opposite sides of the interface. For simplicity, we will takeΓ(Rj −R`) to
be diagonal in the coordinate indices. If we take the Fourier transform of equation (A1) on
the index` (which runs over the small solid) and express the Green functionG in terms of
its Fourier transform on thej index (which runs over the large solid), and we assume that
only a single mode (i.e. only one value ofk) is excited in the small solid, the equation for
that mode has the form

q̈k = −ω2
0(k)qk − iγ q̇k (A4)

whereqk is the Fourier transform ofu(R`), whereγ is given by the imaginary part of the
Fourier transform of

γω =
∑
j ′,j ′′

Γ(R` −Rj ′) ·G(Rj ′ −Rj ′′) · Γ(Rj ′′ −R`′). (A5)

Then, because the arguments ofΓ are essentially restricted to the interface andR` is
restricted to the width of the small particle,γ is of the order of

02
D ImG/ω (A6)

where0D is a typical value of one of the diagonal elements ofΓ. Here ImG is equal to
the phonon mode density of states, which is given by

3�(2π)−3
∫

d3k δ(ω2− ω2
0(k)) = 3�(4π)(3)(2π)−3

∫ kD

0
k2 dkδ(ω2− v2

pk
2)

in the Debye approximation, where� is the unit cell volume,kD is the Debye wave vector,
ω0(k) is the phonon dispersion relation andvp is the phonon velocity. Thus we find that
ImG = (9/2)(ω/ωD)ω−2

D . The Debye frequencyωD = vpkD is of the order of 1013 rad s−1.
In this calculation,0D is equal to the force constant acting across the interface divided by
the square root of the product of the masses of an atom in the small solid and one in the large
solid. In fact, for a very reasonable situation in which the coupling of the lubricant particle
to the sliding solid is by van der Waal’s forces, whereas the atoms within the large solid are
bound to each other by covalent bonds, we might expect0D to be considerably smaller than
ω2
D (which is of the order of a typical force constant for the large solid divided by its mass).

Thus, let us write0D asσω2
D, whereσ is a dimensionless quantity, which is much less than

1 if the intersolid force constants are much less than the intersolid force constants. Then
γ = (9/2)σ 2ωD. Since each mode has an overlap with the displacement of theN th layer
of the order ofN−1, whereN is the number of atomic layers in the small solid, the width
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of each vibrational mode of the small solid is approximately equal toγ /N [2]. Hence, this
quantity will be much smaller than the mode spacing in the small solid, which is of the order
of ωD/N (assuming that the maximum phonon frequency of the small solid is comparable to
the Debye frequency of the large solid) ifσ � 1, which is true whenever the intersolid force
constants are much smaller than the intrasolid force constants. If the lubricant particle’s
layers are coupled by van der Waal’s forces, however, the minimum spacing of its modes
will only be of the order ofσ 1/2ωD/N . This is still large compared toγ /N , however, if
σ � 1. Since the depth of typical wells of the Lennard-Jones potentials used to model
interactions between molecules which interact with Lennard-Jones potentials are typically
of the order of 10−2 eV, as compared to covalent bond strengths, which are typically of
the order of several eV, it is not unreasonable to expect that it should be possible to find
lubricating materials for which the conditions for observing nearly frictionless stick–slip
motion of small lubricating particles will be satisfied.
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